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Abstract:  A probe-fed dielectric resonator antenna (DRA) element is investigated for 
operation in a waveguide environment with application to spatial power combining 
amplifier arrays. The method of analysis is based on the finite-difference time-domain 
(FDTD) approach, wherein a rectangular waveguide and DRA are discretized by using a 
traditional Yee cell griding and a coaxial line is modeled by a thin wire approximation. 
The input impedance and scattering parameters are studied by varying geometrical and 
material parameters of the DRA and the coaxial probe feed. The numerical results 
obtained by the proposed FDTD method are compared with those generated by using a 
commercial software and exhibit very good agreement. 
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1. Introduction 
 

In recent years, there has been an increasing demand for high-power and efficient solid-
state microwave and millimeter-wave amplifiers, which resulted in extensive 
experimental and theoretical research in the area of quasi-optical and spatial power 
combining. A new generation of spatial/quasi-optical power combiners requires a 
development of integrated modeling environment in order to design systems with high 
output power levels and power combining efficiencies for operation at millimeter-wave 
frequencies. Thus, receive and transmit antenna elements used in the amplifier arrays 
must be carefully selected and accurately modeled.  

Due to their attractive characteristics, DRA elements have received an increasing 
interest as radiating antenna elements. The DRA elements have many advantages such as 
wideband nature, small size, high power handling capability, and high radiation 
efficiency as compared with microstrip antennas [1]-[3]. The DRA is often made of high 
dielectric constant materials with very low loss tangent, which makes it attractive for high 
frequency applications where the conduction loss will be much smaller than that of 
microstrip antennas.  

In this paper, a coaxial probe-fed DRA is studied for operation in a rectangular 
waveguide for potential application in spatial power combining amplifier arrays. The 
FDTD method is used for the full-wave analysis of the structure. Scattering parameters of 
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the waveguide-based DRA are studied by varying a position and length of the excitation 
probe and by changing the geometrical parameters of the DRA.  

In the next section, a brief description of the analysis method is presented. In Section 3, 
the scattering parameters are computed using the FDTD method and are compared with 
the results obtained using commercial software. Conclusions and discussions are 
presented in Section 4. 

 
 

2. Theory 
 

The structure to be analyzed here consists of a coaxial probe-fed DRA inside a 
rectangular waveguide as shown in Fig. 1. The geometry is modeled by using the FDTD 
method, where the PML absorbing boundary condition is used to terminate both the 
waveguide port and the coaxial line. For the waveguide calculation area, the traditional 
FDTD update equations are used. The inner conductor of the coaxial line is modeled by a 
thin wire approximation, when the radius is smaller than the FDTD cell dimensions [4]. 
With Ez (i, j, k) = 0 along the wire axis, the spatial dependence of the fields in the vicinity 
can be calculated by 
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The time domain incident and total modal voltages can be calculated from the total 
electric field as 
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 Fig. 1. Waveguide-based coaxial probe-fed DRA geometry. 
 
where VS is the time domain modal voltage for the mode S at the transverse plane located 
at z = z0, E

r
is the time domain total electric field in a rectangular waveguide due to the 



excitation across a waveguide transverse plane, Ser is the modal field vector [5] for the 
mode S, and the integral in (2) is over the transverse plane of the waveguide port.  
    The scattering parameters can be calculated as a ratio of port voltages normalized by 
the characteristic impedances, which for the waveguide section with a coaxial probe-fed 
DRA, are given by 
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where  is the voltage calculated from the reflection field, V−V + is the voltage calculated 
from the forward traveling wave, and the Z’s are the characteristic impedances. The 
characteristic impedance of the coaxial line can be calculated in terms of currents and 
voltages as explained in [5].  

 
 

3. Results and Discussion 
 
   The initial dimensions of the DRA structure are chosen so that the resonance frequency 
of the TE11δ mode is centered around 10 GHz [6]. First, commercial method of moments 
(MoM) software [7] was used for the approximate analysis of a single probe-fed DRA 
element placed on an infinite ground plane and radiating in free space as shown in Fig. 
2(a), where ad = 5.0 mm, hd = 12.0 mm, δd = 1.0 mm, εrd = 12, and the probe radius rw is 
0.3 mm. Then, the probe-fed DRA was placed into a semi-infinite standard X-band 
waveguide of cross-sectional dimensions a =22.86 mm and b =10.16 mm (with geometry 
shown in Fig. 2(b)). To take into consideration the effect of waveguide walls, the height 
of the DRA and the probe position were changed to hd = 9.5 mm and δd = 1.5 mm, 
respectively.  Figs. 3 and 4 show dispersion behavior of the input impedance and the 
reflection coefficient for the geometries shown in Fig. 2 (a) and (b) (cases (a) and (b) in  
Figs. 3 and 4). Due to the interaction with waveguide walls, the dispersion behavior in 
case (b) is quite different from that in case (a) (notice two resonance frequencies and 
narrow bandwidth in case (b)).     
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Fig. 2. (a) Geometry of infinite conductor-
backed, probe-fed DRA. (b) Geometry of 
probe-fed DRA inside semi-infinite waveguide.

Fig. 3. Input impedance for the geometry in 
Fig. 2 (a), (b). 



    Based on the parameters from Fig. 2(b), the geometry of a waveguide-based coaxial 
probe-fed DRA shown in Fig. 1 was analyzed with a custom FDTD technique discussed 
in Section 2. For the rectangular coax of radius 1.2 mm and filled with the dielectric of 
permittivity εr = 2.56, the characteristic impedance Z0 is 51.98 Ω, and only the TEM 
mode is supported as the cutoff frequency of the TE11 coaxial line mode is approximately 
110 GHz. The probe length ld is 4 mm and the probe axis is offset by δd = 1.5 mm from 
the waveguide centerline in the vertical direction. Fig. 5 shows the dispersion behavior of 
the S-parameters for this case. A -10 dB bandwidth of 10% is achieved (compared to the 
3% bandwidth of a microstrip patch antenna used in a similar configuration [5]). The 
results in Fig. 5 are verified with commercial FDTD software [8] and exhibit very good 
agreement.   
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Fig. 4. Reflection coefficient for the geometry 
in Fig. 2 (a), (b). 

Fig. 5. S-parameters for the waveguide-based 
probe-fed DRA (δd = 1.5mm, ld = 4mm). 

    For the structure operating in the X-band, the length and position of the probe in the 
waveguide may be used as parameters to control the matching as well as the overall 
frequency response. The length of the excitation probe ld also affects significantly the 
overall return loss of the structure. Fig. 6 shows the return loss of the structure with 
different values of ld. One can notice that a short probe couples weakly to the coaxial line. 
As the probe length increases, the coupling is increased and a shift of the resonant 
frequency is observed. As the probe becomes longer than 4.5 mm, the coupling to the 
coaxial line starts decreasing.  
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Fig. 7. Effect of varying the probe position δd
with respect to the DRA centerline on the 
return loss (ld = 4mm). 

 



     The effect of the probe position δd with respect to the waveguide centerline is 
illustrated in Fig. 7, which shows the reflection coefficient of the structure for different 
values of δd. It is clear that both the probe length and position can be used to tune and 
control the response in order to obtain a desired return loss over the band of interest. 
 
 

4. Conclusions 
 

     A coaxial probe-fed DRA in a rectangular waveguide excited by the incident 
dominant mode was analyzed by using a custom FDTD method. This analysis provided 
the necessary information for the optimization of design parameters such as DRA 
dimensions and the position and length of the excitation probe. Consequently, 10% 
bandwidth was achieved over the frequency band of interest. This study is a useful step in 
the extension to the case of the DRA array for increasing the output power and the power 
combining efficiency of waveguide-based spatial power combiners.  
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